Сами по себе черные дыры не имеют полярности чисто технически, но вот плазма, создающая аккреционный диск вокруг дыры, при интенсивном поглощении вещества обладает таким полем благодаря заряженным частицам, которые и способны его генерировать. Если учесть стабильность и мощность таких процессов, можно сделать вывод о том что такое магнитное поле будет достаточно стабильным. Однако проведенные исследования говорят об обратном.
Смена полярности магнитного поля распространена у звезд. Так, например, наше Солнце меняет свое поле с периодичностью примерно в 11 лет. И совсем недавно схожие процессы были зафиксированы у черной дыры.
Еще в 2018 году были обнаружены внезапные изменения в галактике на расстоянии 239 миллионов световых лет. Галактика 1ES 1927+654 стала ярче примерно в сто раз в видимом диапазоне. Вскоре после этого обсерватория Swift наблюдала излучение в рентгеновском и ультрафиолетовом диапазонах. Заинтересовавшись этими процессами, ученые начали исследовать архивные данные, на которых могла быть запечатлена эта галактика.
В тот момент быстрое увеличение яркости связали с тем, что сверхмассивная черная дыра в активном центре галактики могла разрушить пролетавшую мимо звезду. Приливное разрушение разорвало бы звезду, что могло повлиять на поток в аккреционном диске и изменить его. Но новое исследование не поддерживает данную версию.
Авторы работы исследовали излучение активного ядра галактики во всем спектре: от радио до рентгеновского. Одни отметили, что интенсивность рентгеновского излучения быстро падала, а потом восстановилась. Рентгеновское излучение часто производится заряженными частицами, двигающимися в интенсивном магнитном поле. Изменения этого излучения должны быть связаны с внезапным изменением магнитного поля рядом с черной дырой.
В то же время интенсивность излучения в видимом и ультрафиолетовом диапазонах увеличилась на это время. Это свидетельствовало о том, что интенсивность поглощения материала и процессы в самом аккреционном диске не подвергались существенному изменению. А сам диск только нагрелся. Ни один из этих эффектов не связывается с приливным разрушением мимо пролетавшей звезды. А вот объяснение через магнитное поле вполне подходит.
Авторы исследования показали, что при инверсии магнитного поля аккреционного диска сначала оно ослабевает на внешних краях, что позволяет им нагреваться эффективнее. В то же время заряженные частицы меньше излучают в рентгеновском диапазоне. И когда процесс инверсии был завершен, излучение во всех диапазонах вернулось в прежний режим.
Источник: mirkosmosa.ru